mirror of
https://github.com/OpenRCT2/OpenRCT2
synced 2026-01-15 11:03:00 +01:00
921 lines
31 KiB
C++
921 lines
31 KiB
C++
/*****************************************************************************
|
|
* Copyright (c) 2014-2024 OpenRCT2 developers
|
|
*
|
|
* For a complete list of all authors, please refer to contributors.md
|
|
* Interested in contributing? Visit https://github.com/OpenRCT2/OpenRCT2
|
|
*
|
|
* OpenRCT2 is licensed under the GNU General Public License version 3.
|
|
*****************************************************************************/
|
|
|
|
#include "MapGen.h"
|
|
|
|
#include "../Context.h"
|
|
#include "../Diagnostic.h"
|
|
#include "../Game.h"
|
|
#include "../GameState.h"
|
|
#include "../core/Guard.hpp"
|
|
#include "../core/Imaging.h"
|
|
#include "../core/String.hpp"
|
|
#include "../localisation/StringIds.h"
|
|
#include "../object/ObjectEntryManager.h"
|
|
#include "../object/ObjectList.h"
|
|
#include "../object/ObjectManager.h"
|
|
#include "../object/SmallSceneryEntry.h"
|
|
#include "../object/TerrainEdgeObject.h"
|
|
#include "../object/TerrainSurfaceObject.h"
|
|
#include "../platform/Platform.h"
|
|
#include "../util/Util.h"
|
|
#include "../world/tile_element/Slope.h"
|
|
#include "Map.h"
|
|
#include "MapHelpers.h"
|
|
#include "Scenery.h"
|
|
#include "Surface.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <vector>
|
|
|
|
using namespace OpenRCT2;
|
|
|
|
#pragma region Height map struct
|
|
|
|
static struct
|
|
{
|
|
uint32_t width = 0;
|
|
uint32_t height = 0;
|
|
std::vector<uint8_t> mono_bitmap;
|
|
} _heightMapData;
|
|
|
|
#pragma endregion Height map struct
|
|
|
|
#pragma region Random objects
|
|
|
|
static constexpr const char* GrassTrees[] = {
|
|
// Dark
|
|
"rct2.scenery_small.tcf", // Caucasian Fir Tree
|
|
"rct2.scenery_small.trf", // Red Fir Tree
|
|
"rct2.scenery_small.trf2", // Red Fir Tree
|
|
"rct2.scenery_small.tsp", // Scots Pine Tree
|
|
"rct2.scenery_small.tmzp", // Montezuma Pine Tree
|
|
"rct2.scenery_small.tap", // Aleppo Pine Tree
|
|
"rct2.scenery_small.tcrp", // Corsican Pine Tree
|
|
"rct2.scenery_small.tbp", // Black Poplar Tree
|
|
|
|
// Light
|
|
"rct2.scenery_small.tcl", // Cedar of Lebanon Tree
|
|
"rct2.scenery_small.tel", // European Larch Tree
|
|
};
|
|
|
|
static constexpr const char* DesertTrees[] = {
|
|
"rct2.scenery_small.tmp", // Monkey-Puzzle Tree
|
|
"rct2.scenery_small.thl", // Honey Locust Tree
|
|
"rct2.scenery_small.th1", // Canary Palm Tree
|
|
"rct2.scenery_small.th2", // Palm Tree
|
|
"rct2.scenery_small.tpm", // Palm Tree
|
|
"rct2.scenery_small.tropt1", // Tree
|
|
"rct2.scenery_small.tbc", // Cactus
|
|
"rct2.scenery_small.tsc", // Cactus
|
|
};
|
|
|
|
static constexpr const char* SnowTrees[] = {
|
|
"rct2.scenery_small.tcfs", // Snow-covered Caucasian Fir Tree
|
|
"rct2.scenery_small.tnss", // Snow-covered Norway Spruce Tree
|
|
"rct2.scenery_small.trf3", // Snow-covered Red Fir Tree
|
|
"rct2.scenery_small.trfs", // Snow-covered Red Fir Tree
|
|
};
|
|
|
|
#pragma endregion
|
|
|
|
// Randomly chosen base terrains. We rarely want a whole map made out of chequerboard or rock.
|
|
static constexpr std::string_view BaseTerrain[] = {
|
|
"rct2.terrain_surface.grass", "rct2.terrain_surface.sand", "rct2.terrain_surface.sand_brown",
|
|
"rct2.terrain_surface.dirt", "rct2.terrain_surface.ice",
|
|
};
|
|
|
|
static void MapGenGenerateBlank(MapGenSettings* settings);
|
|
static void MapGenGenerateSimplex(MapGenSettings* settings);
|
|
static void MapGenGenerateFromHeightmapImage(MapGenSettings* settings);
|
|
|
|
void MapGenGenerate(MapGenSettings* settings)
|
|
{
|
|
switch (settings->algorithm)
|
|
{
|
|
case MapGenAlgorithm::blank:
|
|
MapGenGenerateBlank(settings);
|
|
break;
|
|
|
|
case MapGenAlgorithm::simplex:
|
|
MapGenGenerateSimplex(settings);
|
|
break;
|
|
|
|
case MapGenAlgorithm::heightmapImage:
|
|
MapGenGenerateFromHeightmapImage(settings);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void MapGenPlaceTrees();
|
|
static void MapGenSetWaterLevel(int32_t waterLevel);
|
|
static void MapGenSmoothHeight(int32_t iterations);
|
|
static void MapGenSetHeight(MapGenSettings* settings);
|
|
|
|
static float FractalNoise(int32_t x, int32_t y, float frequency, int32_t octaves, float lacunarity, float persistence);
|
|
static void MapGenSimplex(MapGenSettings* settings);
|
|
|
|
static TileCoordsXY _heightSize;
|
|
static uint8_t* _height;
|
|
|
|
static int32_t GetHeight(int32_t x, int32_t y)
|
|
{
|
|
if (x >= 0 && y >= 0 && x < _heightSize.x && y < _heightSize.y)
|
|
return _height[x + y * _heightSize.x];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void SetHeight(int32_t x, int32_t y, int32_t height)
|
|
{
|
|
if (x >= 0 && y >= 0 && x < _heightSize.x && y < _heightSize.y)
|
|
_height[x + y * _heightSize.x] = height;
|
|
}
|
|
|
|
static void MapGenGenerateBlank(MapGenSettings* settings)
|
|
{
|
|
int32_t x, y;
|
|
MapClearAllElements();
|
|
|
|
MapInit(settings->mapSize);
|
|
for (y = 1; y < settings->mapSize.y - 1; y++)
|
|
{
|
|
for (x = 1; x < settings->mapSize.x - 1; x++)
|
|
{
|
|
auto surfaceElement = MapGetSurfaceElementAt(TileCoordsXY{ x, y });
|
|
if (surfaceElement != nullptr)
|
|
{
|
|
surfaceElement->SetSurfaceObjectIndex(settings->floor);
|
|
surfaceElement->SetEdgeObjectIndex(settings->wall);
|
|
surfaceElement->BaseHeight = settings->height;
|
|
surfaceElement->ClearanceHeight = settings->height;
|
|
}
|
|
}
|
|
}
|
|
|
|
MapGenSetWaterLevel(settings->water_level);
|
|
}
|
|
|
|
static void MapGenGenerateSimplex(MapGenSettings* settings)
|
|
{
|
|
const auto& mapSize = settings->mapSize;
|
|
auto waterLevel = settings->water_level;
|
|
const auto selectedFloor = TerrainSurfaceObject::GetById(settings->floor);
|
|
std::string_view floorTexture = selectedFloor != nullptr ? selectedFloor->GetIdentifier() : "";
|
|
const auto selectedEdge = TerrainEdgeObject::GetById(settings->wall);
|
|
std::string_view edgeTexture = selectedFloor != nullptr ? selectedEdge->GetIdentifier() : "";
|
|
auto& objectManager = OpenRCT2::GetContext()->GetObjectManager();
|
|
|
|
if (floorTexture.empty())
|
|
{
|
|
std::vector<std::string_view> availableTerrains;
|
|
std::copy_if(std::begin(BaseTerrain), std::end(BaseTerrain), std::back_inserter(availableTerrains), [&](auto terrain) {
|
|
return objectManager.GetLoadedObject(ObjectEntryDescriptor(terrain)) != nullptr;
|
|
});
|
|
|
|
if (availableTerrains.empty())
|
|
// Fall back to the first available surface texture that is available in the park
|
|
floorTexture = TerrainSurfaceObject::GetById(0)->GetIdentifier();
|
|
else
|
|
floorTexture = availableTerrains[UtilRand() % availableTerrains.size()];
|
|
}
|
|
|
|
if (edgeTexture.empty())
|
|
{
|
|
// Base edge type on surface type
|
|
if (floorTexture == "rct2.terrain_surface.dirt")
|
|
edgeTexture = "rct2.terrain_edge.wood_red";
|
|
else if (floorTexture == "rct2.terrain_surface.ice")
|
|
edgeTexture = "rct2.terrain_edge.ice";
|
|
else
|
|
edgeTexture = "rct2.terrain_edge.rock";
|
|
|
|
// Fall back to the first available edge texture that is available in the park
|
|
if (objectManager.GetLoadedObject(ObjectEntryDescriptor(edgeTexture)) == nullptr)
|
|
edgeTexture = TerrainEdgeObject::GetById(0)->GetIdentifier();
|
|
}
|
|
|
|
auto floorTextureId = objectManager.GetLoadedObjectEntryIndex(ObjectEntryDescriptor(floorTexture));
|
|
auto edgeTextureId = objectManager.GetLoadedObjectEntryIndex(ObjectEntryDescriptor(edgeTexture));
|
|
|
|
MapClearAllElements();
|
|
|
|
// Initialise the base map
|
|
MapInit(mapSize);
|
|
for (auto y = 1; y < mapSize.y - 1; y++)
|
|
{
|
|
for (auto x = 1; x < mapSize.x - 1; x++)
|
|
{
|
|
auto surfaceElement = MapGetSurfaceElementAt(TileCoordsXY{ x, y });
|
|
if (surfaceElement != nullptr)
|
|
{
|
|
surfaceElement->SetSurfaceObjectIndex(floorTextureId);
|
|
surfaceElement->SetEdgeObjectIndex(edgeTextureId);
|
|
surfaceElement->BaseHeight = settings->height;
|
|
surfaceElement->ClearanceHeight = settings->height;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create the temporary height map and initialise
|
|
_heightSize = { mapSize.x * 2, mapSize.y * 2 };
|
|
_height = new uint8_t[_heightSize.y * _heightSize.x];
|
|
std::fill_n(_height, _heightSize.y * _heightSize.x, 0x00);
|
|
|
|
MapGenSimplex(settings);
|
|
MapGenSmoothHeight(2 + (UtilRand() % 6));
|
|
|
|
// Set the game map to the height map
|
|
MapGenSetHeight(settings);
|
|
delete[] _height;
|
|
|
|
// Set the tile slopes so that there are no cliffs
|
|
while (MapSmooth(1, 1, mapSize.x - 1, mapSize.y - 1))
|
|
{
|
|
}
|
|
|
|
// Add the water
|
|
MapGenSetWaterLevel(waterLevel);
|
|
|
|
// Add sandy beaches
|
|
std::string_view beachTexture = floorTexture;
|
|
if (settings->floor == -1 && floorTexture == "rct2.terrain_surface.grass" && (UtilRand() & 1))
|
|
{
|
|
std::vector<std::string_view> availableBeachTextures;
|
|
if (objectManager.GetLoadedObject(ObjectEntryDescriptor("rct2.terrain_surface.sand")) != nullptr)
|
|
availableBeachTextures.push_back("rct2.terrain_surface.sand");
|
|
if (objectManager.GetLoadedObject(ObjectEntryDescriptor("rct2.terrain_surface.sand_brown")) != nullptr)
|
|
availableBeachTextures.push_back("rct2.terrain_surface.sand_brown");
|
|
|
|
if (!availableBeachTextures.empty())
|
|
beachTexture = availableBeachTextures[UtilRand() % availableBeachTextures.size()];
|
|
}
|
|
auto beachTextureId = objectManager.GetLoadedObjectEntryIndex(ObjectEntryDescriptor(beachTexture));
|
|
|
|
for (auto y = 1; y < mapSize.y - 1; y++)
|
|
{
|
|
for (auto x = 1; x < mapSize.x - 1; x++)
|
|
{
|
|
auto surfaceElement = MapGetSurfaceElementAt(TileCoordsXY{ x, y });
|
|
|
|
if (surfaceElement != nullptr && surfaceElement->BaseHeight < waterLevel + 6)
|
|
surfaceElement->SetSurfaceObjectIndex(beachTextureId);
|
|
}
|
|
}
|
|
|
|
// Place the trees
|
|
if (settings->trees != 0)
|
|
MapGenPlaceTrees();
|
|
}
|
|
|
|
static void MapGenPlaceTree(ObjectEntryIndex type, const CoordsXY& loc)
|
|
{
|
|
auto* sceneryEntry = OpenRCT2::ObjectManager::GetObjectEntry<SmallSceneryEntry>(type);
|
|
if (sceneryEntry == nullptr)
|
|
{
|
|
return;
|
|
}
|
|
|
|
int32_t surfaceZ = TileElementHeight(loc.ToTileCentre());
|
|
|
|
auto* sceneryElement = TileElementInsert<SmallSceneryElement>({ loc, surfaceZ }, 0b1111);
|
|
Guard::Assert(sceneryElement != nullptr);
|
|
|
|
sceneryElement->SetClearanceZ(surfaceZ + sceneryEntry->height);
|
|
sceneryElement->SetDirection(UtilRand() & 3);
|
|
sceneryElement->SetEntryIndex(type);
|
|
sceneryElement->SetAge(0);
|
|
sceneryElement->SetPrimaryColour(COLOUR_YELLOW);
|
|
}
|
|
|
|
static bool MapGenSurfaceTakesGrassTrees(const TerrainSurfaceObject& surface)
|
|
{
|
|
const auto& id = surface.GetIdentifier();
|
|
return id == "rct2.terrain_surface.grass" || id == "rct2.terrain_surface.grass_clumps" || id == "rct2.terrain_surface.dirt";
|
|
}
|
|
|
|
static bool MapGenSurfaceTakesSandTrees(const TerrainSurfaceObject& surface)
|
|
{
|
|
const auto& id = surface.GetIdentifier();
|
|
return id == "rct2.terrain_surface.sand" || id == "rct2.terrain_surface.sand_brown"
|
|
|| id == "rct2.terrain_surface.sand_red";
|
|
}
|
|
|
|
static bool MapGenSurfaceTakesSnowTrees(const TerrainSurfaceObject& surface)
|
|
{
|
|
const auto& id = surface.GetIdentifier();
|
|
return id == "rct2.terrain_surface.ice";
|
|
}
|
|
|
|
template<typename T> static bool TryFindTreeInList(std::string_view id, const T& treeList)
|
|
{
|
|
for (size_t j = 0; j < std::size(treeList); j++)
|
|
{
|
|
if (treeList[j] == id)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Randomly places a selection of preset trees on the map. Picks the right tree for the terrain it is placing it on.
|
|
*/
|
|
static void MapGenPlaceTrees()
|
|
{
|
|
std::vector<int32_t> grassTreeIds;
|
|
std::vector<int32_t> desertTreeIds;
|
|
std::vector<int32_t> snowTreeIds;
|
|
|
|
for (auto i = 0u; i < getObjectEntryGroupCount(ObjectType::SmallScenery); i++)
|
|
{
|
|
auto* sceneryEntry = OpenRCT2::ObjectManager::GetObjectEntry<SmallSceneryEntry>(i);
|
|
auto entry = ObjectEntryGetObject(ObjectType::SmallScenery, i);
|
|
|
|
if (sceneryEntry == nullptr)
|
|
continue;
|
|
|
|
if (TryFindTreeInList(entry->GetIdentifier(), GrassTrees))
|
|
{
|
|
grassTreeIds.push_back(i);
|
|
}
|
|
else if (TryFindTreeInList(entry->GetIdentifier(), DesertTrees))
|
|
{
|
|
desertTreeIds.push_back(i);
|
|
}
|
|
else if (TryFindTreeInList(entry->GetIdentifier(), SnowTrees))
|
|
{
|
|
snowTreeIds.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Place trees
|
|
CoordsXY pos;
|
|
float treeToLandRatio = (10 + (UtilRand() % 30)) / 100.0f;
|
|
auto& gameState = GetGameState();
|
|
for (int32_t y = 1; y < gameState.MapSize.y - 1; y++)
|
|
{
|
|
for (int32_t x = 1; x < gameState.MapSize.x - 1; x++)
|
|
{
|
|
pos.x = x * kCoordsXYStep;
|
|
pos.y = y * kCoordsXYStep;
|
|
|
|
auto* surfaceElement = MapGetSurfaceElementAt(pos);
|
|
if (surfaceElement == nullptr)
|
|
continue;
|
|
|
|
// Don't place on water
|
|
if (surfaceElement->GetWaterHeight() > 0)
|
|
continue;
|
|
|
|
// On sand surfaces, give the tile a score based on nearby water, to be used to determine whether to spawn
|
|
// vegetation
|
|
float oasisScore = 0.0f;
|
|
ObjectEntryIndex treeObjectEntryIndex = OBJECT_ENTRY_INDEX_NULL;
|
|
const auto& surfaceStyleObject = *TerrainSurfaceObject::GetById(surfaceElement->GetSurfaceObjectIndex());
|
|
if (MapGenSurfaceTakesSandTrees(surfaceStyleObject))
|
|
{
|
|
oasisScore = -0.5f;
|
|
constexpr auto maxOasisDistance = 4;
|
|
for (int32_t offsetY = -maxOasisDistance; offsetY <= maxOasisDistance; offsetY++)
|
|
{
|
|
for (int32_t offsetX = -maxOasisDistance; offsetX <= maxOasisDistance; offsetX++)
|
|
{
|
|
// Get map coord, clamped to the edges
|
|
const auto offset = CoordsXY{ offsetX * kCoordsXYStep, offsetY * kCoordsXYStep };
|
|
auto neighbourPos = pos + offset;
|
|
neighbourPos.x = std::clamp(neighbourPos.x, kCoordsXYStep, kCoordsXYStep * (gameState.MapSize.x - 1));
|
|
neighbourPos.y = std::clamp(neighbourPos.y, kCoordsXYStep, kCoordsXYStep * (gameState.MapSize.y - 1));
|
|
|
|
const auto neighboutSurface = MapGetSurfaceElementAt(neighbourPos);
|
|
if (neighboutSurface != nullptr && neighboutSurface->GetWaterHeight() > 0)
|
|
{
|
|
float distance = std::sqrt(offsetX * offsetX + offsetY * offsetY);
|
|
oasisScore += 0.5f / (maxOasisDistance * distance);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Use tree:land ratio except when near an oasis
|
|
constexpr static auto randModulo = 0xFFFF;
|
|
if (static_cast<float>(UtilRand() & randModulo) / randModulo > std::max(treeToLandRatio, oasisScore))
|
|
continue;
|
|
|
|
// Use fractal noise to group tiles that are likely to spawn trees together
|
|
float noiseValue = FractalNoise(x, y, 0.025f, 2, 2.0f, 0.65f);
|
|
// Reduces the range to rarely stray further than 0.5 from the mean.
|
|
float noiseOffset = UtilRandNormalDistributed() * 0.25f;
|
|
if (noiseValue + oasisScore < noiseOffset)
|
|
continue;
|
|
|
|
if (!grassTreeIds.empty() && MapGenSurfaceTakesGrassTrees(surfaceStyleObject))
|
|
{
|
|
treeObjectEntryIndex = grassTreeIds[UtilRand() % grassTreeIds.size()];
|
|
}
|
|
else if (!desertTreeIds.empty() && MapGenSurfaceTakesSandTrees(surfaceStyleObject))
|
|
{
|
|
treeObjectEntryIndex = desertTreeIds[UtilRand() % desertTreeIds.size()];
|
|
}
|
|
else if (!snowTreeIds.empty() && MapGenSurfaceTakesSnowTrees(surfaceStyleObject))
|
|
{
|
|
treeObjectEntryIndex = snowTreeIds[UtilRand() % snowTreeIds.size()];
|
|
}
|
|
|
|
if (treeObjectEntryIndex != OBJECT_ENTRY_INDEX_NULL)
|
|
MapGenPlaceTree(treeObjectEntryIndex, pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets each tile's water level to the specified water level if underneath that water level.
|
|
*/
|
|
static void MapGenSetWaterLevel(int32_t waterLevel)
|
|
{
|
|
auto& gameState = GetGameState();
|
|
for (int32_t y = 1; y < gameState.MapSize.y - 1; y++)
|
|
{
|
|
for (int32_t x = 1; x < gameState.MapSize.x - 1; x++)
|
|
{
|
|
auto surfaceElement = MapGetSurfaceElementAt(TileCoordsXY{ x, y });
|
|
if (surfaceElement != nullptr && surfaceElement->BaseHeight < waterLevel)
|
|
surfaceElement->SetWaterHeight(waterLevel * kCoordsZStep);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Smooths the height map.
|
|
*/
|
|
static void MapGenSmoothHeight(int32_t iterations)
|
|
{
|
|
int32_t i, x, y, xx, yy, avg;
|
|
int32_t arraySize = _heightSize.y * _heightSize.x * sizeof(uint8_t);
|
|
uint8_t* copyHeight = new uint8_t[arraySize];
|
|
|
|
for (i = 0; i < iterations; i++)
|
|
{
|
|
std::memcpy(copyHeight, _height, arraySize);
|
|
for (y = 1; y < _heightSize.y - 1; y++)
|
|
{
|
|
for (x = 1; x < _heightSize.x - 1; x++)
|
|
{
|
|
avg = 0;
|
|
for (yy = -1; yy <= 1; yy++)
|
|
{
|
|
for (xx = -1; xx <= 1; xx++)
|
|
{
|
|
avg += copyHeight[(y + yy) * _heightSize.x + (x + xx)];
|
|
}
|
|
}
|
|
avg /= 9;
|
|
SetHeight(x, y, avg);
|
|
}
|
|
}
|
|
}
|
|
|
|
delete[] copyHeight;
|
|
}
|
|
|
|
/**
|
|
* Sets the height of the actual game map tiles to the height map.
|
|
*/
|
|
static void MapGenSetHeight(MapGenSettings* settings)
|
|
{
|
|
int32_t x, y, heightX, heightY;
|
|
|
|
for (y = 1; y < _heightSize.y / 2 - 1; y++)
|
|
{
|
|
for (x = 1; x < _heightSize.x / 2 - 1; x++)
|
|
{
|
|
heightX = x * 2;
|
|
heightY = y * 2;
|
|
|
|
uint8_t q00 = GetHeight(heightX + 0, heightY + 0);
|
|
uint8_t q01 = GetHeight(heightX + 0, heightY + 1);
|
|
uint8_t q10 = GetHeight(heightX + 1, heightY + 0);
|
|
uint8_t q11 = GetHeight(heightX + 1, heightY + 1);
|
|
|
|
uint8_t baseHeight = (q00 + q01 + q10 + q11) / 4;
|
|
|
|
auto surfaceElement = MapGetSurfaceElementAt(TileCoordsXY{ x, y });
|
|
if (surfaceElement == nullptr)
|
|
continue;
|
|
surfaceElement->BaseHeight = std::max(2, baseHeight * 2);
|
|
|
|
// If base height is below water level, lower it to create more natural shorelines
|
|
if (surfaceElement->BaseHeight >= 4 && surfaceElement->BaseHeight <= settings->water_level)
|
|
surfaceElement->BaseHeight -= 2;
|
|
|
|
surfaceElement->ClearanceHeight = surfaceElement->BaseHeight;
|
|
|
|
uint8_t currentSlope = surfaceElement->GetSlope();
|
|
|
|
if (q00 > baseHeight)
|
|
currentSlope |= kTileSlopeSCornerUp;
|
|
if (q01 > baseHeight)
|
|
currentSlope |= kTileSlopeWCornerUp;
|
|
if (q10 > baseHeight)
|
|
currentSlope |= kTileSlopeECornerUp;
|
|
if (q11 > baseHeight)
|
|
currentSlope |= kTileSlopeNCornerUp;
|
|
|
|
surfaceElement->SetSlope(currentSlope);
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma region Noise
|
|
|
|
/**
|
|
* Simplex Noise Algorithm with Fractional Brownian Motion
|
|
* Based on:
|
|
* - https://code.google.com/p/simplexnoise/
|
|
* - https://code.google.com/p/fractalterraingeneration/wiki/Fractional_Brownian_Motion
|
|
*/
|
|
|
|
static float Generate(float x, float y);
|
|
static int32_t FastFloor(float x);
|
|
static float Grad(int32_t hash, float x, float y);
|
|
|
|
static uint8_t perm[512];
|
|
|
|
static void NoiseRand()
|
|
{
|
|
for (auto& i : perm)
|
|
{
|
|
i = UtilRand() & 0xFF;
|
|
}
|
|
}
|
|
|
|
static float FractalNoise(int32_t x, int32_t y, float frequency, int32_t octaves, float lacunarity, float persistence)
|
|
{
|
|
float total = 0.0f;
|
|
float amplitude = persistence;
|
|
for (int32_t i = 0; i < octaves; i++)
|
|
{
|
|
total += Generate(x * frequency, y * frequency) * amplitude;
|
|
frequency *= lacunarity;
|
|
amplitude *= persistence;
|
|
}
|
|
return total;
|
|
}
|
|
|
|
static float Generate(float x, float y)
|
|
{
|
|
const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)
|
|
const float G2 = 0.211324865f; // G2 = (3.0-sqrt(3.0))/6.0
|
|
|
|
float n0, n1, n2; // Noise contributions from the three corners
|
|
|
|
// Skew the input space to determine which simplex cell we're in
|
|
float s = (x + y) * F2; // Hairy factor for 2D
|
|
float xs = x + s;
|
|
float ys = y + s;
|
|
int32_t i = FastFloor(xs);
|
|
int32_t j = FastFloor(ys);
|
|
|
|
float t = static_cast<float>(i + j) * G2;
|
|
float X0 = i - t; // Unskew the cell origin back to (x,y) space
|
|
float Y0 = j - t;
|
|
float x0 = x - X0; // The x,y distances from the cell origin
|
|
float y0 = y - Y0;
|
|
|
|
// For the 2D case, the simplex shape is an equilateral triangle.
|
|
// Determine which simplex we are in.
|
|
int32_t i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
|
if (x0 > y0)
|
|
{
|
|
i1 = 1;
|
|
j1 = 0;
|
|
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
|
else
|
|
{
|
|
i1 = 0;
|
|
j1 = 1;
|
|
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
|
|
|
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
|
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
|
// c = (3-sqrt(3))/6
|
|
|
|
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
|
|
float y1 = y0 - j1 + G2;
|
|
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
|
|
float y2 = y0 - 1.0f + 2.0f * G2;
|
|
|
|
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
|
|
int32_t ii = i % 256;
|
|
int32_t jj = j % 256;
|
|
|
|
// Calculate the contribution from the three corners
|
|
float t0 = 0.5f - x0 * x0 - y0 * y0;
|
|
if (t0 < 0.0f)
|
|
{
|
|
n0 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t0 *= t0;
|
|
n0 = t0 * t0 * Grad(perm[ii + perm[jj]], x0, y0);
|
|
}
|
|
|
|
float t1 = 0.5f - x1 * x1 - y1 * y1;
|
|
if (t1 < 0.0f)
|
|
{
|
|
n1 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t1 *= t1;
|
|
n1 = t1 * t1 * Grad(perm[ii + i1 + perm[jj + j1]], x1, y1);
|
|
}
|
|
|
|
float t2 = 0.5f - x2 * x2 - y2 * y2;
|
|
if (t2 < 0.0f)
|
|
{
|
|
n2 = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
t2 *= t2;
|
|
n2 = t2 * t2 * Grad(perm[ii + 1 + perm[jj + 1]], x2, y2);
|
|
}
|
|
|
|
// Add contributions from each corner to get the final noise value.
|
|
// The result is scaled to return values in the interval [-1,1].
|
|
return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
|
|
}
|
|
|
|
static int32_t FastFloor(float x)
|
|
{
|
|
return (x > 0) ? (static_cast<int32_t>(x)) : ((static_cast<int32_t>(x)) - 1);
|
|
}
|
|
|
|
static float Grad(int32_t hash, float x, float y)
|
|
{
|
|
int32_t h = hash & 7; // Convert low 3 bits of hash code
|
|
float u = h < 4 ? x : y; // into 8 simple gradient directions,
|
|
float v = h < 4 ? y : x; // and compute the dot product with (x,y).
|
|
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v);
|
|
}
|
|
|
|
static void MapGenSimplex(MapGenSettings* settings)
|
|
{
|
|
int32_t x, y;
|
|
|
|
float freq = settings->simplex_base_freq * (1.0f / _heightSize.x);
|
|
int32_t octaves = settings->simplex_octaves;
|
|
|
|
int32_t low = settings->simplex_low;
|
|
int32_t high = settings->simplex_high;
|
|
|
|
NoiseRand();
|
|
for (y = 0; y < _heightSize.y; y++)
|
|
{
|
|
for (x = 0; x < _heightSize.x; x++)
|
|
{
|
|
float noiseValue = std::clamp(FractalNoise(x, y, freq, octaves, 2.0f, 0.65f), -1.0f, 1.0f);
|
|
float normalisedNoiseValue = (noiseValue + 1.0f) / 2.0f;
|
|
|
|
SetHeight(x, y, low + static_cast<int32_t>(normalisedNoiseValue * high));
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma endregion
|
|
|
|
#pragma region Heightmap
|
|
|
|
/**
|
|
* Return the tile coordinate that matches the given pixel of a heightmap
|
|
*/
|
|
static TileCoordsXY MapgenHeightmapCoordToTileCoordsXY(uint32_t x, uint32_t y)
|
|
{
|
|
// The height map does not include the empty tiles around the map, so we add 1.
|
|
return TileCoordsXY(static_cast<int32_t>(y + 1), static_cast<int32_t>(x + 1));
|
|
}
|
|
|
|
bool MapGenLoadHeightmapImage(const utf8* path)
|
|
{
|
|
auto format = Imaging::GetImageFormatFromPath(path);
|
|
if (format == IMAGE_FORMAT::PNG)
|
|
{
|
|
// Promote to 32-bit
|
|
format = IMAGE_FORMAT::PNG_32;
|
|
}
|
|
|
|
try
|
|
{
|
|
auto image = Imaging::ReadFromFile(path, format);
|
|
auto width = std::min<uint32_t>(image.Width, kMaximumMapSizePractical);
|
|
auto height = std::min<uint32_t>(image.Height, kMaximumMapSizePractical);
|
|
if (width != image.Width || height != image.Height)
|
|
{
|
|
ContextShowError(STR_HEIGHT_MAP_ERROR, STR_ERROR_HEIHGT_MAP_TOO_BIG, {});
|
|
}
|
|
|
|
// Allocate memory for the height map values, one byte pixel
|
|
_heightMapData.mono_bitmap.resize(width * height);
|
|
_heightMapData.width = width;
|
|
_heightMapData.height = height;
|
|
|
|
// Copy average RGB value to mono bitmap
|
|
constexpr auto numChannels = 4;
|
|
const auto pitch = image.Stride;
|
|
const auto pixels = image.Pixels.data();
|
|
for (uint32_t x = 0; x < _heightMapData.width; x++)
|
|
{
|
|
for (uint32_t y = 0; y < _heightMapData.height; y++)
|
|
{
|
|
const auto red = pixels[x * numChannels + y * pitch];
|
|
const auto green = pixels[x * numChannels + y * pitch + 1];
|
|
const auto blue = pixels[x * numChannels + y * pitch + 2];
|
|
_heightMapData.mono_bitmap[x + y * _heightMapData.width] = (red + green + blue) / 3;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
switch (format)
|
|
{
|
|
case IMAGE_FORMAT::BITMAP:
|
|
ContextShowError(STR_HEIGHT_MAP_ERROR, STR_ERROR_READING_BITMAP, {});
|
|
break;
|
|
case IMAGE_FORMAT::PNG_32:
|
|
ContextShowError(STR_HEIGHT_MAP_ERROR, STR_ERROR_READING_PNG, {});
|
|
break;
|
|
default:
|
|
LOG_ERROR("Unable to load height map image: %s", e.what());
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Frees the memory used to store the selected height map
|
|
*/
|
|
void MapGenUnloadHeightmapImage()
|
|
{
|
|
_heightMapData.mono_bitmap.clear();
|
|
_heightMapData.width = 0;
|
|
_heightMapData.height = 0;
|
|
}
|
|
|
|
/**
|
|
* Applies box blur to the surface N times
|
|
*/
|
|
static void MapGenSmoothHeightmap(std::vector<uint8_t>& src, int32_t strength)
|
|
{
|
|
// Create buffer to store one channel
|
|
std::vector<uint8_t> dest(src.size());
|
|
|
|
for (int32_t i = 0; i < strength; i++)
|
|
{
|
|
// Calculate box blur value to all pixels of the surface
|
|
for (uint32_t y = 0; y < _heightMapData.height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < _heightMapData.width; x++)
|
|
{
|
|
uint32_t heightSum = 0;
|
|
|
|
// Loop over neighbour pixels, all of them have the same weight
|
|
for (int8_t offsetX = -1; offsetX <= 1; offsetX++)
|
|
{
|
|
for (int8_t offsetY = -1; offsetY <= 1; offsetY++)
|
|
{
|
|
// Clamp x and y so they stay within the image
|
|
// This assumes the height map is not tiled, and increases the weight of the edges
|
|
const int32_t readX = std::clamp<int32_t>(x + offsetX, 0, _heightMapData.width - 1);
|
|
const int32_t readY = std::clamp<int32_t>(y + offsetY, 0, _heightMapData.height - 1);
|
|
heightSum += src[readX + readY * _heightMapData.width];
|
|
}
|
|
}
|
|
|
|
// Take average
|
|
dest[x + y * _heightMapData.width] = heightSum / 9;
|
|
}
|
|
}
|
|
|
|
// Now apply the blur to the source pixels
|
|
for (uint32_t y = 0; y < _heightMapData.height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < _heightMapData.width; x++)
|
|
{
|
|
src[x + y * _heightMapData.width] = dest[x + y * _heightMapData.width];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void MapGenGenerateFromHeightmapImage(MapGenSettings* settings)
|
|
{
|
|
Guard::Assert(!_heightMapData.mono_bitmap.empty(), "No height map loaded");
|
|
Guard::Assert(settings->simplex_high != settings->simplex_low, "Low and high setting cannot be the same");
|
|
|
|
// Make a copy of the original height map that we can edit
|
|
auto dest = _heightMapData.mono_bitmap;
|
|
|
|
// Get technical map size, +2 for the black tiles around the map
|
|
auto maxWidth = static_cast<int32_t>(_heightMapData.width + 2);
|
|
auto maxHeight = static_cast<int32_t>(_heightMapData.height + 2);
|
|
MapInit({ maxHeight, maxWidth });
|
|
|
|
if (settings->smooth_height_map)
|
|
{
|
|
MapGenSmoothHeightmap(dest, settings->smooth_strength);
|
|
}
|
|
|
|
uint8_t maxValue = 255;
|
|
uint8_t minValue = 0;
|
|
|
|
if (settings->normalize_height)
|
|
{
|
|
// Get highest and lowest pixel value
|
|
maxValue = 0;
|
|
minValue = 0xff;
|
|
for (uint32_t y = 0; y < _heightMapData.height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < _heightMapData.width; x++)
|
|
{
|
|
uint8_t value = dest[x + y * _heightMapData.width];
|
|
maxValue = std::max(maxValue, value);
|
|
minValue = std::min(minValue, value);
|
|
}
|
|
}
|
|
|
|
if (minValue == maxValue)
|
|
{
|
|
ContextShowError(STR_HEIGHT_MAP_ERROR, STR_ERROR_CANNOT_NORMALIZE, {});
|
|
return;
|
|
}
|
|
}
|
|
|
|
Guard::Assert(maxValue > minValue, "Input range is invalid");
|
|
Guard::Assert(settings->simplex_high > settings->simplex_low, "Output range is invalid");
|
|
|
|
const uint8_t rangeIn = maxValue - minValue;
|
|
const uint8_t rangeOut = settings->simplex_high - settings->simplex_low;
|
|
|
|
for (uint32_t y = 0; y < _heightMapData.height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < _heightMapData.width; x++)
|
|
{
|
|
// The x and y axis are flipped in the world, so this uses y for x and x for y.
|
|
auto tileCoords = MapgenHeightmapCoordToTileCoordsXY(x, y);
|
|
auto* const surfaceElement = MapGetSurfaceElementAt(tileCoords);
|
|
if (surfaceElement == nullptr)
|
|
continue;
|
|
|
|
// Read value from bitmap, and convert its range
|
|
uint8_t value = dest[x + y * _heightMapData.width];
|
|
value = static_cast<uint8_t>(static_cast<float>(value - minValue) / rangeIn * rangeOut) + settings->simplex_low;
|
|
surfaceElement->BaseHeight = value;
|
|
|
|
// Floor to even number
|
|
surfaceElement->BaseHeight /= 2;
|
|
surfaceElement->BaseHeight *= 2;
|
|
surfaceElement->ClearanceHeight = surfaceElement->BaseHeight;
|
|
|
|
// Set water level
|
|
if (surfaceElement->BaseHeight < settings->water_level)
|
|
{
|
|
surfaceElement->SetWaterHeight(settings->water_level * kCoordsZStep);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Smooth map
|
|
if (settings->smooth)
|
|
{
|
|
// Keep smoothing the entire map until no tiles are changed anymore
|
|
while (true)
|
|
{
|
|
uint32_t numTilesChanged = 0;
|
|
for (uint32_t y = 0; y < _heightMapData.height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < _heightMapData.width; x++)
|
|
{
|
|
auto tileCoords = MapgenHeightmapCoordToTileCoordsXY(x, y);
|
|
numTilesChanged += TileSmooth(tileCoords);
|
|
}
|
|
}
|
|
|
|
if (numTilesChanged == 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma endregion
|