1
0
mirror of https://github.com/OpenTTD/OpenTTD synced 2026-01-18 09:52:44 +01:00
Files
OpenTTD/src/articulated_vehicles.cpp
rubidium 908ff68459 (svn r24034) [1.2] -Backport from trunk:
- Feature: Increase the station class limit from 32 to 256 (r24031)
- Fix: [NoAI] reset 'is random' status of temporary variable during saveload as it is not always written to when loading an AI which means it wouldd be taking the 'is random' setting of another AI (r24033)
- Fix: [NoAI] Make AIEngine::IsArticulated return true if the articulated callback flag is set, do not try to run the callback (r24029)
- Fix: Pass cases down into the list of cargos [FS#5090] (r24024, r24023, r24022)
2012-03-17 11:20:43 +00:00

412 lines
14 KiB
C++

/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file articulated_vehicles.cpp Implementation of articulated vehicles. */
#include "stdafx.h"
#include "train.h"
#include "roadveh.h"
#include "vehicle_func.h"
#include "engine_func.h"
#include "company_func.h"
#include "newgrf.h"
#include "table/strings.h"
static const uint MAX_ARTICULATED_PARTS = 100; ///< Maximum of articulated parts per vehicle, i.e. when to abort calling the articulated vehicle callback.
/**
* Determines the next articulated part to attach
* @param index Position in chain
* @param front_type Front engine type
* @param front Front engine
* @param mirrored Returns whether the part shall be flipped.
* @return engine to add or INVALID_ENGINE
*/
static EngineID GetNextArticulatedPart(uint index, EngineID front_type, Vehicle *front = NULL, bool *mirrored = NULL)
{
assert(front == NULL || front->engine_type == front_type);
const Engine *front_engine = Engine::Get(front_type);
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, index, 0, front_type, front);
if (callback == CALLBACK_FAILED) return INVALID_ENGINE;
if (front_engine->GetGRF()->grf_version < 8) {
/* 8 bits, bit 7 for mirroring */
callback = GB(callback, 0, 8);
if (callback == 0xFF) return INVALID_ENGINE;
if (mirrored != NULL) *mirrored = HasBit(callback, 7);
callback = GB(callback, 0, 7);
} else {
/* 15 bits, bit 14 for mirroring */
if (callback == 0x7FFF) return INVALID_ENGINE;
if (mirrored != NULL) *mirrored = HasBit(callback, 14);
callback = GB(callback, 0, 14);
}
return GetNewEngineID(front_engine->GetGRF(), front_engine->type, callback);
}
/**
* Does a NewGRF report that this should be an articulated vehicle?
* @param engine_type The engine to check.
* @return True iff the articulated engine callback flag is set.
*/
bool IsArticulatedEngine(EngineID engine_type)
{
return HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE);
}
/**
* Count the number of articulated parts of an engine.
* @param engine_type The engine to get the number of parts of.
* @param purchase_window Whether we are in the scope of the purchase window or not, i.e. whether we cannot allocate vehicles.
* @return The nmumber of parts.
*/
uint CountArticulatedParts(EngineID engine_type, bool purchase_window)
{
if (!HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return 0;
/* If we can't allocate a vehicle now, we can't allocate it in the command
* either, so it doesn't matter how many articulated parts there are. */
if (!Vehicle::CanAllocateItem()) return 0;
Vehicle *v = NULL;
if (!purchase_window) {
v = new Vehicle();
v->engine_type = engine_type;
v->owner = _current_company;
}
uint i;
for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
if (GetNextArticulatedPart(i, engine_type, v) == INVALID_ENGINE) break;
}
delete v;
return i - 1;
}
/**
* Returns the default (non-refitted) capacity of a specific EngineID.
* @param engine the EngineID of iterest
* @param cargo_type returns the default cargo type, if needed
* @return capacity
*/
static inline uint16 GetVehicleDefaultCapacity(EngineID engine, CargoID *cargo_type)
{
const Engine *e = Engine::Get(engine);
CargoID cargo = (e->CanCarryCargo() ? e->GetDefaultCargoType() : (CargoID)CT_INVALID);
if (cargo_type != NULL) *cargo_type = cargo;
if (cargo == CT_INVALID) return 0;
return e->GetDisplayDefaultCapacity();
}
/**
* Returns all cargoes a vehicle can carry.
* @param engine the EngineID of iterest
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit set of CargoIDs
*/
static inline uint32 GetAvailableVehicleCargoTypes(EngineID engine, bool include_initial_cargo_type)
{
const Engine *e = Engine::Get(engine);
if (!e->CanCarryCargo()) return 0;
uint32 cargoes = e->info.refit_mask;
if (include_initial_cargo_type) {
SetBit(cargoes, e->GetDefaultCargoType());
}
return cargoes;
}
/**
* Get the capacity of the parts of a given engine.
* @param engine The engine to get the capacities from.
* @return The cargo capacities.
*/
CargoArray GetCapacityOfArticulatedParts(EngineID engine)
{
CargoArray capacity;
const Engine *e = Engine::Get(engine);
CargoID cargo_type;
uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, &cargo_type);
if (cargo_type < NUM_CARGO) capacity[cargo_type] = cargo_capacity;
if (!e->IsGroundVehicle()) return capacity;
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return capacity;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
EngineID artic_engine = GetNextArticulatedPart(i, engine);
if (artic_engine == INVALID_ENGINE) break;
cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
if (cargo_type < NUM_CARGO) capacity[cargo_type] += cargo_capacity;
}
return capacity;
}
/**
* Checks whether any of the articulated parts is refittable
* @param engine the first part
* @return true if refittable
*/
bool IsArticulatedVehicleRefittable(EngineID engine)
{
if (IsEngineRefittable(engine)) return true;
const Engine *e = Engine::Get(engine);
if (!e->IsGroundVehicle()) return false;
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return false;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
EngineID artic_engine = GetNextArticulatedPart(i, engine);
if (artic_engine == INVALID_ENGINE) break;
if (IsEngineRefittable(artic_engine)) return true;
}
return false;
}
/**
* Merges the refit_masks of all articulated parts.
* @param engine the first part
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @param union_mask returns bit mask of CargoIDs which are a refit option for at least one articulated part
* @param intersection_mask returns bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
*/
void GetArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type, uint32 *union_mask, uint32 *intersection_mask)
{
const Engine *e = Engine::Get(engine);
uint32 veh_cargoes = GetAvailableVehicleCargoTypes(engine, include_initial_cargo_type);
*union_mask = veh_cargoes;
*intersection_mask = (veh_cargoes != 0) ? veh_cargoes : UINT32_MAX;
if (!e->IsGroundVehicle()) return;
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
EngineID artic_engine = GetNextArticulatedPart(i, engine);
if (artic_engine == INVALID_ENGINE) break;
veh_cargoes = GetAvailableVehicleCargoTypes(artic_engine, include_initial_cargo_type);
*union_mask |= veh_cargoes;
if (veh_cargoes != 0) *intersection_mask &= veh_cargoes;
}
}
/**
* Ors the refit_masks of all articulated parts.
* @param engine the first part
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit mask of CargoIDs which are a refit option for at least one articulated part
*/
uint32 GetUnionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
{
uint32 union_mask, intersection_mask;
GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
return union_mask;
}
/**
* Ands the refit_masks of all articulated parts.
* @param engine the first part
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
*/
uint32 GetIntersectionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
{
uint32 union_mask, intersection_mask;
GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
return intersection_mask;
}
/**
* Tests if all parts of an articulated vehicle are refitted to the same cargo.
* Note: Vehicles not carrying anything are ignored
* @param v the first vehicle in the chain
* @param cargo_type returns the common CargoID if needed. (CT_INVALID if no part is carrying something or they are carrying different things)
* @return true if some parts are carrying different cargoes, false if all parts are carrying the same (nothing is also the same)
*/
bool IsArticulatedVehicleCarryingDifferentCargoes(const Vehicle *v, CargoID *cargo_type)
{
CargoID first_cargo = CT_INVALID;
do {
if (v->cargo_type != CT_INVALID && v->GetEngine()->CanCarryCargo()) {
if (first_cargo == CT_INVALID) first_cargo = v->cargo_type;
if (first_cargo != v->cargo_type) {
if (cargo_type != NULL) *cargo_type = CT_INVALID;
return true;
}
}
v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : NULL;
} while (v != NULL);
if (cargo_type != NULL) *cargo_type = first_cargo;
return false;
}
/**
* Checks whether the specs of freshly build articulated vehicles are consistent with the information specified in the purchase list.
* Only essential information is checked to leave room for magic tricks/workarounds to grfcoders.
* It checks:
* For autoreplace/-renew:
* - Default cargo type (without capacity)
* - intersection and union of refit masks.
*/
void CheckConsistencyOfArticulatedVehicle(const Vehicle *v)
{
const Engine *engine = v->GetEngine();
uint32 purchase_refit_union, purchase_refit_intersection;
GetArticulatedRefitMasks(v->engine_type, true, &purchase_refit_union, &purchase_refit_intersection);
CargoArray purchase_default_capacity = GetCapacityOfArticulatedParts(v->engine_type);
uint32 real_refit_union = 0;
uint32 real_refit_intersection = UINT_MAX;
CargoArray real_default_capacity;
do {
uint32 refit_mask = GetAvailableVehicleCargoTypes(v->engine_type, true);
real_refit_union |= refit_mask;
if (refit_mask != 0) real_refit_intersection &= refit_mask;
assert(v->cargo_type < NUM_CARGO);
real_default_capacity[v->cargo_type] += v->cargo_cap;
v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : NULL;
} while (v != NULL);
/* Check whether the vehicle carries more cargoes than expected */
bool carries_more = false;
for (CargoID cid = 0; cid < NUM_CARGO; cid++) {
if (real_default_capacity[cid] != 0 && purchase_default_capacity[cid] == 0) {
carries_more = true;
break;
}
}
/* show a warning once for each GRF after each game load */
if (real_refit_union != purchase_refit_union || real_refit_intersection != purchase_refit_intersection || carries_more) {
ShowNewGrfVehicleError(engine->index, STR_NEWGRF_BUGGY, STR_NEWGRF_BUGGY_ARTICULATED_CARGO, GBUG_VEH_REFIT, false);
}
}
/**
* Add the remaining articulated parts to the given vehicle.
* @param first The head of the articulated bit.
*/
void AddArticulatedParts(Vehicle *first)
{
VehicleType type = first->type;
if (!HasBit(EngInfo(first->engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
Vehicle *v = first;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
bool flip_image;
EngineID engine_type = GetNextArticulatedPart(i, first->engine_type, first, &flip_image);
if (engine_type == INVALID_ENGINE) return;
/* In the (very rare) case the GRF reported wrong number of articulated parts
* and we run out of available vehicles, bail out. */
if (!Vehicle::CanAllocateItem()) return;
GroundVehicleCache *gcache = v->GetGroundVehicleCache();
gcache->first_engine = v->engine_type; // Needs to be set before first callback
const Engine *e_artic = Engine::Get(engine_type);
switch (type) {
default: NOT_REACHED();
case VEH_TRAIN: {
Train *front = Train::From(first);
Train *t = new Train();
v->SetNext(t);
v = t;
t->subtype = 0;
t->track = front->track;
t->railtype = front->railtype;
t->spritenum = e_artic->u.rail.image_index;
if (e_artic->CanCarryCargo()) {
t->cargo_type = e_artic->GetDefaultCargoType();
t->cargo_cap = e_artic->u.rail.capacity; // Callback 36 is called when the consist is finished
} else {
t->cargo_type = front->cargo_type; // Needed for livery selection
t->cargo_cap = 0;
}
t->SetArticulatedPart();
break;
}
case VEH_ROAD: {
RoadVehicle *front = RoadVehicle::From(first);
RoadVehicle *rv = new RoadVehicle();
v->SetNext(rv);
v = rv;
rv->subtype = 0;
gcache->cached_veh_length = VEHICLE_LENGTH; // Callback is called when the consist is finished
rv->state = RVSB_IN_DEPOT;
rv->roadtype = front->roadtype;
rv->compatible_roadtypes = front->compatible_roadtypes;
rv->spritenum = e_artic->u.road.image_index;
if (e_artic->CanCarryCargo()) {
rv->cargo_type = e_artic->GetDefaultCargoType();
rv->cargo_cap = e_artic->u.road.capacity; // Callback 36 is called when the consist is finished
} else {
rv->cargo_type = front->cargo_type; // Needed for livery selection
rv->cargo_cap = 0;
}
rv->SetArticulatedPart();
break;
}
}
/* get common values from first engine */
v->direction = first->direction;
v->owner = first->owner;
v->tile = first->tile;
v->x_pos = first->x_pos;
v->y_pos = first->y_pos;
v->z_pos = first->z_pos;
v->build_year = first->build_year;
v->vehstatus = first->vehstatus & ~VS_STOPPED;
v->cargo_subtype = 0;
v->max_age = 0;
v->engine_type = engine_type;
v->value = 0;
v->cur_image = SPR_IMG_QUERY;
v->random_bits = VehicleRandomBits();
if (flip_image) v->spritenum++;
VehicleUpdatePosition(v);
}
}