1
0
mirror of https://github.com/OpenRCT2/OpenRCT2 synced 2025-12-23 15:52:55 +01:00
Files
OpenRCT2/src/openrct2/world/Sprite.cpp
2020-01-19 17:15:52 +00:00

1121 lines
33 KiB
C++

/*****************************************************************************
* Copyright (c) 2014-2019 OpenRCT2 developers
*
* For a complete list of all authors, please refer to contributors.md
* Interested in contributing? Visit https://github.com/OpenRCT2/OpenRCT2
*
* OpenRCT2 is licensed under the GNU General Public License version 3.
*****************************************************************************/
#include "Sprite.h"
#include "../Cheats.h"
#include "../Game.h"
#include "../OpenRCT2.h"
#include "../audio/audio.h"
#include "../core/Crypt.h"
#include "../core/Guard.hpp"
#include "../interface/Viewport.h"
#include "../localisation/Date.h"
#include "../localisation/Localisation.h"
#include "../scenario/Scenario.h"
#include "Fountain.h"
#include <algorithm>
#include <cmath>
#include <iterator>
uint16_t gSpriteListHead[SPRITE_LIST_COUNT];
uint16_t gSpriteListCount[SPRITE_LIST_COUNT];
static rct_sprite _spriteList[MAX_SPRITES];
static bool _spriteFlashingList[MAX_SPRITES];
#define SPATIAL_INDEX_LOCATION_NULL 0x10000
uint16_t gSpriteSpatialIndex[0x10001];
const rct_string_id litterNames[12] = { STR_LITTER_VOMIT,
STR_LITTER_VOMIT,
STR_SHOP_ITEM_SINGULAR_EMPTY_CAN,
STR_SHOP_ITEM_SINGULAR_RUBBISH,
STR_SHOP_ITEM_SINGULAR_EMPTY_BURGER_BOX,
STR_SHOP_ITEM_SINGULAR_EMPTY_CUP,
STR_SHOP_ITEM_SINGULAR_EMPTY_BOX,
STR_SHOP_ITEM_SINGULAR_EMPTY_BOTTLE,
STR_SHOP_ITEM_SINGULAR_EMPTY_BOWL_RED,
STR_SHOP_ITEM_SINGULAR_EMPTY_DRINK_CARTON,
STR_SHOP_ITEM_SINGULAR_EMPTY_JUICE_CUP,
STR_SHOP_ITEM_SINGULAR_EMPTY_BOWL_BLUE };
static LocationXYZ16 _spritelocations1[MAX_SPRITES];
static LocationXYZ16 _spritelocations2[MAX_SPRITES];
static size_t GetSpatialIndexOffset(int32_t x, int32_t y);
std::string rct_sprite_checksum::ToString() const
{
std::string result;
result.reserve(raw.size() * 2);
for (auto b : raw)
{
char buf[3];
snprintf(buf, 3, "%02x", b);
result.append(buf);
}
return result;
}
rct_sprite* try_get_sprite(size_t spriteIndex)
{
rct_sprite* sprite = nullptr;
if (spriteIndex < MAX_SPRITES)
{
sprite = &_spriteList[spriteIndex];
}
return sprite;
}
rct_sprite* get_sprite(size_t sprite_idx)
{
if (sprite_idx == SPRITE_INDEX_NULL)
{
return nullptr;
}
openrct2_assert(sprite_idx < MAX_SPRITES, "Tried getting sprite %u", sprite_idx);
if (sprite_idx >= MAX_SPRITES)
{
return nullptr;
}
return &_spriteList[sprite_idx];
}
uint16_t sprite_get_first_in_quadrant(int32_t x, int32_t y)
{
int32_t offset = ((x & 0x1FE0) << 3) | (y >> 5);
return gSpriteSpatialIndex[offset];
}
static void invalidate_sprite_max_zoom(rct_sprite* sprite, int32_t maxZoom)
{
if (sprite->generic.sprite_left == LOCATION_NULL)
return;
for (int32_t i = 0; i < MAX_VIEWPORT_COUNT; i++)
{
rct_viewport* viewport = &g_viewport_list[i];
if (viewport->width != 0 && viewport->zoom <= maxZoom)
{
viewport_invalidate(
viewport, sprite->generic.sprite_left, sprite->generic.sprite_top, sprite->generic.sprite_right,
sprite->generic.sprite_bottom);
}
}
}
/**
* Invalidate the sprite if at closest zoom.
* rct2: 0x006EC60B
*/
void invalidate_sprite_0(rct_sprite* sprite)
{
invalidate_sprite_max_zoom(sprite, 0);
}
/**
* Invalidate sprite if at closest zoom or next zoom up from closest.
* rct2: 0x006EC53F
*/
void invalidate_sprite_1(rct_sprite* sprite)
{
invalidate_sprite_max_zoom(sprite, 1);
}
/**
* Invalidate sprite if not at furthest zoom.
* rct2: 0x006EC473
*
* @param sprite (esi)
*/
void invalidate_sprite_2(rct_sprite* sprite)
{
invalidate_sprite_max_zoom(sprite, 2);
}
/**
*
* rct2: 0x0069EB13
*/
void reset_sprite_list()
{
gSavedAge = 0;
std::memset(_spriteList, 0, sizeof(_spriteList));
for (int32_t i = 0; i < SPRITE_LIST_COUNT; i++)
{
gSpriteListHead[i] = SPRITE_INDEX_NULL;
gSpriteListCount[i] = 0;
_spriteFlashingList[i] = false;
}
rct_sprite* previous_spr = (rct_sprite*)SPRITE_INDEX_NULL;
for (int32_t i = 0; i < MAX_SPRITES; ++i)
{
rct_sprite* spr = get_sprite(i);
spr->generic.sprite_identifier = SPRITE_IDENTIFIER_NULL;
spr->generic.sprite_index = i;
spr->generic.next = SPRITE_INDEX_NULL;
spr->generic.linked_list_index = 0;
if (previous_spr != (rct_sprite*)SPRITE_INDEX_NULL)
{
spr->generic.previous = previous_spr->generic.sprite_index;
previous_spr->generic.next = i;
}
else
{
spr->generic.previous = SPRITE_INDEX_NULL;
gSpriteListHead[SPRITE_LIST_FREE] = i;
}
_spriteFlashingList[i] = false;
previous_spr = spr;
}
gSpriteListCount[SPRITE_LIST_FREE] = MAX_SPRITES;
reset_sprite_spatial_index();
}
/**
*
* rct2: 0x0069EBE4
* This function looks as though it sets some sort of order for sprites.
* Sprites can share their position if this is the case.
*/
void reset_sprite_spatial_index()
{
std::fill_n(gSpriteSpatialIndex, std::size(gSpriteSpatialIndex), SPRITE_INDEX_NULL);
for (size_t i = 0; i < MAX_SPRITES; i++)
{
rct_sprite* spr = get_sprite(i);
if (spr->generic.sprite_identifier != SPRITE_IDENTIFIER_NULL)
{
size_t index = GetSpatialIndexOffset(spr->generic.x, spr->generic.y);
uint16_t nextSpriteId = gSpriteSpatialIndex[index];
gSpriteSpatialIndex[index] = spr->generic.sprite_index;
spr->generic.next_in_quadrant = nextSpriteId;
}
}
}
static size_t GetSpatialIndexOffset(int32_t x, int32_t y)
{
size_t index = SPATIAL_INDEX_LOCATION_NULL;
if (x != LOCATION_NULL)
{
x = std::clamp(x, 0, 0xFFFF);
y = std::clamp(y, 0, 0xFFFF);
int16_t flooredX = floor2(x, 32);
uint8_t tileY = y >> 5;
index = (flooredX << 3) | tileY;
}
openrct2_assert(index < sizeof(gSpriteSpatialIndex), "GetSpatialIndexOffset out of range");
return index;
}
#ifndef DISABLE_NETWORK
rct_sprite_checksum sprite_checksum()
{
using namespace Crypt;
// TODO Remove statics, should be one of these per sprite manager / OpenRCT2 context.
// Alternatively, make a new class for this functionality.
static std::unique_ptr<HashAlgorithm<20>> _spriteHashAlg;
rct_sprite_checksum checksum;
try
{
if (_spriteHashAlg == nullptr)
{
_spriteHashAlg = CreateSHA1();
}
_spriteHashAlg->Clear();
for (size_t i = 0; i < MAX_SPRITES; i++)
{
auto sprite = get_sprite(i);
if (sprite->generic.sprite_identifier != SPRITE_IDENTIFIER_NULL
&& sprite->generic.sprite_identifier != SPRITE_IDENTIFIER_MISC)
{
auto copy = *sprite;
// Only required for rendering/invalidation, has no meaning to the game state.
copy.generic.sprite_left = copy.generic.sprite_right = copy.generic.sprite_top = copy.generic.sprite_bottom = 0;
copy.generic.sprite_width = copy.generic.sprite_height_negative = copy.generic.sprite_height_positive = 0;
// Next in quadrant might be a misc sprite, set first non-misc sprite in quadrant.
while (auto* nextSprite = get_sprite(copy.generic.next_in_quadrant))
{
if (nextSprite->generic.sprite_identifier == SPRITE_IDENTIFIER_MISC)
copy.generic.next_in_quadrant = nextSprite->generic.next_in_quadrant;
else
break;
}
if (copy.generic.sprite_identifier == SPRITE_IDENTIFIER_PEEP)
{
// Name is pointer and will not be the same across clients
copy.peep.name = {};
// We set this to 0 because as soon the client selects a guest the window will remove the
// invalidation flags causing the sprite checksum to be different than on server, the flag does not affect
// game state.
copy.peep.window_invalidate_flags = 0;
}
_spriteHashAlg->Update(&copy, sizeof(copy));
}
}
checksum.raw = _spriteHashAlg->Finish();
}
catch (std::exception& e)
{
log_error("sprite_checksum failed: %s", e.what());
throw;
}
return checksum;
}
#else
rct_sprite_checksum sprite_checksum()
{
return rct_sprite_checksum{};
}
#endif // DISABLE_NETWORK
static void sprite_reset(SpriteGeneric* sprite)
{
// Need to retain how the sprite is linked in lists
uint8_t llto = sprite->linked_list_index;
uint16_t next = sprite->next;
uint16_t next_in_quadrant = sprite->next_in_quadrant;
uint16_t prev = sprite->previous;
uint16_t sprite_index = sprite->sprite_index;
_spriteFlashingList[sprite_index] = false;
std::memset(sprite, 0, sizeof(rct_sprite));
sprite->linked_list_index = llto;
sprite->next = next;
sprite->next_in_quadrant = next_in_quadrant;
sprite->previous = prev;
sprite->sprite_index = sprite_index;
sprite->sprite_identifier = SPRITE_IDENTIFIER_NULL;
}
/**
* Clears all the unused sprite memory to zero. Probably so that it can be compressed better when saving.
* rct2: 0x0069EBA4
*/
void sprite_clear_all_unused()
{
SpriteGeneric* sprite;
uint16_t spriteIndex, nextSpriteIndex;
spriteIndex = gSpriteListHead[SPRITE_LIST_FREE];
while (spriteIndex != SPRITE_INDEX_NULL)
{
sprite = &get_sprite(spriteIndex)->generic;
nextSpriteIndex = sprite->next;
sprite_reset(sprite);
sprite->linked_list_index = SPRITE_LIST_FREE;
// This shouldn't be necessary, as sprite_reset() preserves the index
// but it has been left in as a safety net in case the index isn't set correctly
sprite->sprite_index = spriteIndex;
// sprite->next_in_quadrant will only end up as zero owing to corruption
// most likely due to previous builds not preserving it when resetting sprites
// We reset it to SPRITE_INDEX_NULL to prevent cycles in the sprite lists
if (sprite->next_in_quadrant == 0)
{
sprite->next_in_quadrant = SPRITE_INDEX_NULL;
}
_spriteFlashingList[spriteIndex] = false;
spriteIndex = nextSpriteIndex;
}
}
static constexpr uint16_t MAX_MISC_SPRITES = 300;
rct_sprite* create_sprite(SPRITE_IDENTIFIER spriteIdentifier)
{
if (gSpriteListCount[SPRITE_LIST_FREE] == 0)
{
// No free sprites.
return nullptr;
}
SPRITE_LIST linkedListIndex;
switch (spriteIdentifier)
{
case SPRITE_IDENTIFIER_VEHICLE:
linkedListIndex = SPRITE_LIST_VEHICLE;
break;
case SPRITE_IDENTIFIER_PEEP:
linkedListIndex = SPRITE_LIST_PEEP;
break;
case SPRITE_IDENTIFIER_MISC:
linkedListIndex = SPRITE_LIST_MISC;
break;
case SPRITE_IDENTIFIER_LITTER:
linkedListIndex = SPRITE_LIST_LITTER;
break;
default:
Guard::Assert(false, "Invalid sprite identifier: 0x%02X", spriteIdentifier);
return nullptr;
}
if (linkedListIndex == SPRITE_LIST_MISC)
{
// Misc sprites are commonly used for effects, if there are less than MAX_MISC_SPRITES
// free it will fail to keep slots for more relevant sprites.
// Also there can't be more than MAX_MISC_SPRITES sprites in this list.
uint16_t miscSlotsRemaining = MAX_MISC_SPRITES - gSpriteListCount[SPRITE_LIST_MISC];
if (miscSlotsRemaining >= gSpriteListCount[SPRITE_LIST_FREE])
{
return nullptr;
}
}
SpriteGeneric* sprite = &(get_sprite(gSpriteListHead[SPRITE_LIST_FREE]))->generic;
move_sprite_to_list(sprite, linkedListIndex);
// Need to reset all sprite data, as the uninitialised values
// may contain garbage and cause a desync later on.
sprite_reset(sprite);
sprite->x = LOCATION_NULL;
sprite->y = LOCATION_NULL;
sprite->z = 0;
sprite->sprite_width = 0x10;
sprite->sprite_height_negative = 0x14;
sprite->sprite_height_positive = 0x8;
sprite->flags = 0;
sprite->sprite_left = LOCATION_NULL;
sprite->next_in_quadrant = gSpriteSpatialIndex[SPATIAL_INDEX_LOCATION_NULL];
gSpriteSpatialIndex[SPATIAL_INDEX_LOCATION_NULL] = sprite->sprite_index;
return (rct_sprite*)sprite;
}
/*
* rct2: 0x0069ED0B
* This function moves a sprite to the specified sprite linked list.
* The game uses this list to categorise sprites by type.
*/
void move_sprite_to_list(SpriteBase* sprite, SPRITE_LIST newListIndex)
{
int32_t oldListIndex = sprite->linked_list_index;
// No need to move if the sprite is already in the desired list
if (oldListIndex == newListIndex)
{
return;
}
// If the sprite is currently the head of the list, the
// sprite following this one becomes the new head of the list.
if (sprite->previous == SPRITE_INDEX_NULL)
{
gSpriteListHead[oldListIndex] = sprite->next;
}
else
{
// Hook up sprite->previous->next to sprite->next, removing the sprite from its old list
get_sprite(sprite->previous)->generic.next = sprite->next;
}
// Similarly, hook up sprite->next->previous to sprite->previous
if (sprite->next != SPRITE_INDEX_NULL)
{
get_sprite(sprite->next)->generic.previous = sprite->previous;
}
sprite->previous = SPRITE_INDEX_NULL; // We become the new head of the target list, so there's no previous sprite
sprite->linked_list_index = newListIndex;
sprite->next = gSpriteListHead[newListIndex]; // This sprite's next sprite is the old head, since we're the new head
gSpriteListHead[newListIndex] = sprite->sprite_index; // Store this sprite's index as head of its new list
if (sprite->next != SPRITE_INDEX_NULL)
{
// Fix the chain by settings sprite->next->previous to sprite_index
get_sprite(sprite->next)->generic.previous = sprite->sprite_index;
}
// These globals are probably counters for each sprite list?
// Decrement old list counter, increment new list counter.
gSpriteListCount[oldListIndex]--;
gSpriteListCount[newListIndex]++;
}
/**
*
* rct2: 0x00673200
*/
static void sprite_steam_particle_update(SteamParticle* steam)
{
invalidate_sprite_2((rct_sprite*)steam);
// Move up 1 z every 3 ticks (Starts after 4 ticks)
steam->time_to_move++;
if (steam->time_to_move >= 4)
{
steam->time_to_move = 1;
sprite_move(steam->x, steam->y, steam->z + 1, (rct_sprite*)steam);
}
steam->frame += 64;
if (steam->frame >= (56 * 64))
{
sprite_remove(steam);
}
}
/**
*
* rct2: 0x0067363D
*/
void sprite_misc_explosion_cloud_create(int32_t x, int32_t y, int32_t z)
{
SpriteGeneric* sprite = &create_sprite(SPRITE_IDENTIFIER_MISC)->generic;
if (sprite != nullptr)
{
sprite->sprite_width = 44;
sprite->sprite_height_negative = 32;
sprite->sprite_height_positive = 34;
sprite->sprite_identifier = SPRITE_IDENTIFIER_MISC;
sprite_move(x, y, z + 4, (rct_sprite*)sprite);
sprite->type = SPRITE_MISC_EXPLOSION_CLOUD;
sprite->frame = 0;
}
}
/**
*
* rct2: 0x00673385
*/
static void sprite_misc_explosion_cloud_update(rct_sprite* sprite)
{
invalidate_sprite_2(sprite);
sprite->generic.frame += 128;
if (sprite->generic.frame >= (36 * 128))
{
sprite_remove(&sprite->generic);
}
}
/**
*
* rct2: 0x0067366B
*/
void sprite_misc_explosion_flare_create(int32_t x, int32_t y, int32_t z)
{
SpriteGeneric* sprite = &create_sprite(SPRITE_IDENTIFIER_MISC)->generic;
if (sprite != nullptr)
{
sprite->sprite_width = 25;
sprite->sprite_height_negative = 85;
sprite->sprite_height_positive = 8;
sprite->sprite_identifier = SPRITE_IDENTIFIER_MISC;
sprite_move(x, y, z + 4, (rct_sprite*)sprite);
sprite->type = SPRITE_MISC_EXPLOSION_FLARE;
sprite->frame = 0;
}
}
/**
*
* rct2: 0x006733B4
*/
static void sprite_misc_explosion_flare_update(rct_sprite* sprite)
{
invalidate_sprite_2(sprite);
sprite->generic.frame += 64;
if (sprite->generic.frame >= (124 * 64))
{
sprite_remove(&sprite->generic);
}
}
/**
*
* rct2: 0x006731CD
*/
static void sprite_misc_update(rct_sprite* sprite)
{
switch (sprite->generic.type)
{
case SPRITE_MISC_STEAM_PARTICLE:
sprite_steam_particle_update((SteamParticle*)sprite);
break;
case SPRITE_MISC_MONEY_EFFECT:
sprite->money_effect.Update();
break;
case SPRITE_MISC_CRASHED_VEHICLE_PARTICLE:
crashed_vehicle_particle_update((VehicleCrashParticle*)sprite);
break;
case SPRITE_MISC_EXPLOSION_CLOUD:
sprite_misc_explosion_cloud_update(sprite);
break;
case SPRITE_MISC_CRASH_SPLASH:
crash_splash_update((CrashSplashParticle*)sprite);
break;
case SPRITE_MISC_EXPLOSION_FLARE:
sprite_misc_explosion_flare_update(sprite);
break;
case SPRITE_MISC_JUMPING_FOUNTAIN_WATER:
case SPRITE_MISC_JUMPING_FOUNTAIN_SNOW:
sprite->jumping_fountain.Update();
break;
case SPRITE_MISC_BALLOON:
balloon_update(&sprite->balloon);
break;
case SPRITE_MISC_DUCK:
duck_update(&sprite->duck);
break;
}
}
/**
*
* rct2: 0x00672AA4
*/
void sprite_misc_update_all()
{
rct_sprite* sprite;
uint16_t spriteIndex;
spriteIndex = gSpriteListHead[SPRITE_LIST_MISC];
while (spriteIndex != SPRITE_INDEX_NULL)
{
sprite = get_sprite(spriteIndex);
spriteIndex = sprite->generic.next;
sprite_misc_update(sprite);
}
}
/**
* Moves a sprite to a new location.
* rct2: 0x0069E9D3
*
* @param x (ax)
* @param y (cx)
* @param z (dx)
* @param sprite (esi)
*/
void sprite_move(int16_t x, int16_t y, int16_t z, rct_sprite* sprite)
{
if (x < 0 || y < 0 || x > 0x1FFF || y > 0x1FFF)
{
x = LOCATION_NULL;
}
size_t newIndex = GetSpatialIndexOffset(x, y);
size_t currentIndex = GetSpatialIndexOffset(sprite->generic.x, sprite->generic.y);
if (newIndex != currentIndex)
{
uint16_t* spriteIndex = &gSpriteSpatialIndex[currentIndex];
if (*spriteIndex != SPRITE_INDEX_NULL)
{
rct_sprite* sprite2 = get_sprite(*spriteIndex);
while (sprite != sprite2)
{
spriteIndex = &sprite2->generic.next_in_quadrant;
if (*spriteIndex == SPRITE_INDEX_NULL)
{
break;
}
sprite2 = get_sprite(*spriteIndex);
}
}
*spriteIndex = sprite->generic.next_in_quadrant;
int32_t tempSpriteIndex = gSpriteSpatialIndex[newIndex];
gSpriteSpatialIndex[newIndex] = sprite->generic.sprite_index;
sprite->generic.next_in_quadrant = tempSpriteIndex;
}
if (x == LOCATION_NULL)
{
sprite->generic.sprite_left = LOCATION_NULL;
sprite->generic.x = x;
sprite->generic.y = y;
sprite->generic.z = z;
}
else
{
sprite_set_coordinates(x, y, z, sprite);
}
}
void sprite_set_coordinates(int16_t x, int16_t y, int16_t z, rct_sprite* sprite)
{
CoordsXYZ coords3d = { x, y, z };
auto screenCoords = translate_3d_to_2d_with_z(get_current_rotation(), coords3d);
sprite->generic.sprite_left = screenCoords.x - sprite->generic.sprite_width;
sprite->generic.sprite_right = screenCoords.x + sprite->generic.sprite_width;
sprite->generic.sprite_top = screenCoords.y - sprite->generic.sprite_height_negative;
sprite->generic.sprite_bottom = screenCoords.y + sprite->generic.sprite_height_positive;
sprite->generic.x = x;
sprite->generic.y = y;
sprite->generic.z = z;
}
/**
*
* rct2: 0x0069EDB6
*/
void sprite_remove(SpriteBase* sprite)
{
auto peep = ((rct_sprite*)sprite)->AsPeep();
if (peep != nullptr)
{
peep->SetName({});
}
move_sprite_to_list(sprite, SPRITE_LIST_FREE);
sprite->sprite_identifier = SPRITE_IDENTIFIER_NULL;
_spriteFlashingList[sprite->sprite_index] = false;
size_t quadrantIndex = GetSpatialIndexOffset(sprite->x, sprite->y);
uint16_t* spriteIndex = &gSpriteSpatialIndex[quadrantIndex];
SpriteBase* quadrantSprite;
while (*spriteIndex != SPRITE_INDEX_NULL && (quadrantSprite = &get_sprite(*spriteIndex)->generic) != sprite)
{
spriteIndex = &quadrantSprite->next_in_quadrant;
}
*spriteIndex = sprite->next_in_quadrant;
}
static bool litter_can_be_at(int32_t x, int32_t y, int32_t z)
{
TileElement* tileElement;
if (!map_is_location_owned({ x, y, z }))
return false;
tileElement = map_get_first_element_at({ x, y });
if (tileElement == nullptr)
return false;
do
{
if (tileElement->GetType() != TILE_ELEMENT_TYPE_PATH)
continue;
int32_t pathZ = tileElement->GetBaseZ();
if (pathZ < z || pathZ >= z + 32)
continue;
return !tile_element_is_underground(tileElement);
} while (!(tileElement++)->IsLastForTile());
return false;
}
/**
*
* rct2: 0x0067375D
*/
void litter_create(int32_t x, int32_t y, int32_t z, int32_t direction, int32_t type)
{
if (gCheatsDisableLittering)
return;
x += CoordsDirectionDelta[direction >> 3].x / 8;
y += CoordsDirectionDelta[direction >> 3].y / 8;
if (!litter_can_be_at(x, y, z))
return;
if (gSpriteListCount[SPRITE_LIST_LITTER] >= 500)
{
Litter* newestLitter = nullptr;
uint32_t newestLitterCreationTick = 0;
for (uint16_t nextSpriteIndex, spriteIndex = gSpriteListHead[SPRITE_LIST_LITTER]; spriteIndex != SPRITE_INDEX_NULL;
spriteIndex = nextSpriteIndex)
{
Litter* litter = &get_sprite(spriteIndex)->litter;
nextSpriteIndex = litter->next;
if (newestLitterCreationTick <= litter->creationTick)
{
newestLitterCreationTick = litter->creationTick;
newestLitter = litter;
}
}
if (newestLitter != nullptr)
{
invalidate_sprite_0((rct_sprite*)newestLitter);
sprite_remove(newestLitter);
}
}
Litter* litter = (Litter*)create_sprite(SPRITE_IDENTIFIER_LITTER);
if (litter == nullptr)
return;
litter->sprite_direction = direction;
litter->sprite_width = 6;
litter->sprite_height_negative = 6;
litter->sprite_height_positive = 3;
litter->sprite_identifier = SPRITE_IDENTIFIER_LITTER;
litter->type = type;
sprite_move(x, y, z, (rct_sprite*)litter);
invalidate_sprite_0((rct_sprite*)litter);
litter->creationTick = gScenarioTicks;
}
/**
*
* rct2: 0x006738E1
*/
void litter_remove_at(int32_t x, int32_t y, int32_t z)
{
uint16_t spriteIndex = sprite_get_first_in_quadrant(x, y);
while (spriteIndex != SPRITE_INDEX_NULL)
{
rct_sprite* sprite = get_sprite(spriteIndex);
uint16_t nextSpriteIndex = sprite->generic.next_in_quadrant;
if (sprite->generic.linked_list_index == SPRITE_LIST_LITTER)
{
Litter* litter = &sprite->litter;
if (abs(litter->z - z) <= 16)
{
if (abs(litter->x - x) <= 8 && abs(litter->y - y) <= 8)
{
invalidate_sprite_0(sprite);
sprite_remove(sprite);
}
}
}
spriteIndex = nextSpriteIndex;
}
}
/**
* Determines whether it's worth tweening a sprite or not when frame smoothing is on.
*/
static bool sprite_should_tween(rct_sprite* sprite)
{
switch (sprite->generic.linked_list_index)
{
case SPRITE_LIST_PEEP:
case SPRITE_LIST_VEHICLE_HEAD:
case SPRITE_LIST_VEHICLE:
return true;
}
return false;
}
static void store_sprite_locations(LocationXYZ16* sprite_locations)
{
for (uint16_t i = 0; i < MAX_SPRITES; i++)
{
// skip going through `get_sprite` to not get stalled on assert,
// this can get very expensive for busy parks with uncap FPS option on
const rct_sprite* sprite = &_spriteList[i];
sprite_locations[i].x = sprite->generic.x;
sprite_locations[i].y = sprite->generic.y;
sprite_locations[i].z = sprite->generic.z;
}
}
void sprite_position_tween_store_a()
{
store_sprite_locations(_spritelocations1);
}
void sprite_position_tween_store_b()
{
store_sprite_locations(_spritelocations2);
}
void sprite_position_tween_all(float alpha)
{
const float inv = (1.0f - alpha);
for (uint16_t i = 0; i < MAX_SPRITES; i++)
{
rct_sprite* sprite = get_sprite(i);
if (sprite_should_tween(sprite))
{
LocationXYZ16 posA = _spritelocations1[i];
LocationXYZ16 posB = _spritelocations2[i];
if (posA.x == posB.x && posA.y == posB.y && posA.z == posB.z)
{
continue;
}
sprite_set_coordinates(
std::round(posB.x * alpha + posA.x * inv), std::round(posB.y * alpha + posA.y * inv),
std::round(posB.z * alpha + posA.z * inv), sprite);
invalidate_sprite_2(sprite);
}
}
}
/**
* Restore the real positions of the sprites so they aren't left at the mid-tween positions
*/
void sprite_position_tween_restore()
{
for (uint16_t i = 0; i < MAX_SPRITES; i++)
{
rct_sprite* sprite = get_sprite(i);
if (sprite_should_tween(sprite))
{
invalidate_sprite_2(sprite);
LocationXYZ16 pos = _spritelocations2[i];
sprite_set_coordinates(pos.x, pos.y, pos.z, sprite);
}
}
}
void sprite_position_tween_reset()
{
for (uint16_t i = 0; i < MAX_SPRITES; i++)
{
rct_sprite* sprite = get_sprite(i);
_spritelocations1[i].x = _spritelocations2[i].x = sprite->generic.x;
_spritelocations1[i].y = _spritelocations2[i].y = sprite->generic.y;
_spritelocations1[i].z = _spritelocations2[i].z = sprite->generic.z;
}
}
void sprite_set_flashing(rct_sprite* sprite, bool flashing)
{
assert(sprite->generic.sprite_index < MAX_SPRITES);
_spriteFlashingList[sprite->generic.sprite_index] = flashing;
}
bool sprite_get_flashing(rct_sprite* sprite)
{
assert(sprite->generic.sprite_index < MAX_SPRITES);
return _spriteFlashingList[sprite->generic.sprite_index];
}
static rct_sprite* find_sprite_list_cycle(uint16_t sprite_idx)
{
if (sprite_idx == SPRITE_INDEX_NULL)
{
return nullptr;
}
const rct_sprite* fast = get_sprite(sprite_idx);
const rct_sprite* slow = fast;
bool increment_slow = false;
rct_sprite* cycle_start = nullptr;
while (fast->generic.sprite_index != SPRITE_INDEX_NULL)
{
// increment fast every time, unless reached the end
if (fast->generic.next == SPRITE_INDEX_NULL)
{
break;
}
else
{
fast = get_sprite(fast->generic.next);
}
// increment slow only every second iteration
if (increment_slow)
{
slow = get_sprite(slow->generic.next);
}
increment_slow = !increment_slow;
if (fast == slow)
{
cycle_start = get_sprite(slow->generic.sprite_index);
break;
}
}
return cycle_start;
}
static rct_sprite* find_sprite_quadrant_cycle(uint16_t sprite_idx)
{
if (sprite_idx == SPRITE_INDEX_NULL)
{
return nullptr;
}
const rct_sprite* fast = get_sprite(sprite_idx);
const rct_sprite* slow = fast;
bool increment_slow = false;
rct_sprite* cycle_start = nullptr;
while (fast->generic.sprite_index != SPRITE_INDEX_NULL)
{
// increment fast every time, unless reached the end
if (fast->generic.next_in_quadrant == SPRITE_INDEX_NULL)
{
break;
}
else
{
fast = get_sprite(fast->generic.next_in_quadrant);
}
// increment slow only every second iteration
if (increment_slow)
{
slow = get_sprite(slow->generic.next_in_quadrant);
}
increment_slow = !increment_slow;
if (fast == slow)
{
cycle_start = get_sprite(slow->generic.sprite_index);
break;
}
}
return cycle_start;
}
static bool index_is_in_list(uint16_t index, enum SPRITE_LIST sl)
{
uint16_t sprite_index = gSpriteListHead[sl];
while (sprite_index != SPRITE_INDEX_NULL)
{
if (sprite_index == index)
{
return true;
}
sprite_index = get_sprite(sprite_index)->generic.next;
}
return false;
}
int32_t check_for_sprite_list_cycles(bool fix)
{
for (int32_t i = 0; i < SPRITE_LIST_COUNT; i++)
{
rct_sprite* cycle_start = find_sprite_list_cycle(gSpriteListHead[i]);
if (cycle_start != nullptr)
{
if (fix)
{
// Fix head list, but only in reverse order
// This is likely not needed, but just in case
get_sprite(gSpriteListHead[i])->generic.previous = SPRITE_INDEX_NULL;
// Store the leftover part of cycle to be fixed
uint16_t cycle_next = cycle_start->generic.next;
// Break the cycle
cycle_start->generic.next = SPRITE_INDEX_NULL;
// Now re-add remainder of the cycle back to list, safely.
// Add each sprite to the list until we encounter one that is already part of the list.
while (!index_is_in_list(cycle_next, (SPRITE_LIST)i))
{
rct_sprite* spr = get_sprite(cycle_next);
cycle_start->generic.next = cycle_next;
spr->generic.previous = cycle_start->generic.sprite_index;
cycle_next = spr->generic.next;
spr->generic.next = SPRITE_INDEX_NULL;
cycle_start = spr;
}
}
return i;
}
}
return -1;
}
/**
* Finds and fixes null sprites that are not reachable via SPRITE_LIST_FREE list.
*
* @return count of disjoint sprites found
*/
int32_t fix_disjoint_sprites()
{
// Find reachable sprites
bool reachable[MAX_SPRITES] = { false };
uint16_t sprite_idx = gSpriteListHead[SPRITE_LIST_FREE];
rct_sprite* null_list_tail = nullptr;
while (sprite_idx != SPRITE_INDEX_NULL)
{
reachable[sprite_idx] = true;
// cache the tail, so we don't have to walk the list twice
null_list_tail = get_sprite(sprite_idx);
sprite_idx = null_list_tail->generic.next;
}
int32_t count = 0;
// Find all null sprites
for (sprite_idx = 0; sprite_idx < MAX_SPRITES; sprite_idx++)
{
rct_sprite* spr = get_sprite(sprite_idx);
if (spr->generic.sprite_identifier == SPRITE_IDENTIFIER_NULL)
{
openrct2_assert(null_list_tail != nullptr, "Null list is empty, yet found null sprites");
spr->generic.sprite_index = sprite_idx;
if (!reachable[sprite_idx])
{
// Add the sprite directly to the list
null_list_tail->generic.next = sprite_idx;
spr->generic.next = SPRITE_INDEX_NULL;
spr->generic.previous = null_list_tail->generic.sprite_index;
null_list_tail = spr;
count++;
reachable[sprite_idx] = true;
}
}
}
return count;
}
int32_t check_for_spatial_index_cycles(bool fix)
{
for (int32_t i = 0; i < SPATIAL_INDEX_LOCATION_NULL; i++)
{
rct_sprite* cycle_start = find_sprite_quadrant_cycle(gSpriteSpatialIndex[i]);
if (cycle_start != nullptr)
{
if (fix)
{
// Store the leftover part of cycle to be fixed
uint16_t cycle_next = cycle_start->generic.next_in_quadrant;
// Break the cycle
cycle_start->generic.next_in_quadrant = SPRITE_INDEX_NULL;
// Now re-add remainder of the cycle back to list, safely.
// Add each sprite to the list until we encounter one that is already part of the list.
while (!index_is_in_list(cycle_next, (SPRITE_LIST)i))
{
rct_sprite* spr = get_sprite(cycle_next);
cycle_start->generic.next_in_quadrant = cycle_next;
cycle_next = spr->generic.next_in_quadrant;
spr->generic.next_in_quadrant = SPRITE_INDEX_NULL;
cycle_start = spr;
}
}
return i;
}
}
return -1;
}